Year 5

- numbar

teachit

Unit 1- place value number problems

Unit 1 Introduction
Unit 1 Questions
Unit 1 Answers
Unit 1 Teaching notes

Unit 2- place value practical problems
Unit 2 Introduction
Unit 2 Questions
Unit 2 Answers
Unit 2 Teaching notes

Unit 3- addition and subtraction problems

Unit 3 Introduction
Unit 3 Questions
Unit 3 Answers
Unit 3 Teaching notes
Unit 4- length, perimeter and area
Unit 4 Introduction
Unit 4 Questions
Unit 4 Answers
Unit 4 Teaching notes
Unit 5- multiplication and division, factors and squares
Unit 5 Introduction
Unit 5 Questions
Unit 5 Answers
Unit 1 Teaching notes

Unit 6- multiplication and division operations

Unit 6 Introduction

\qquad
Unit 6 Questions \qquad
Unit 6 Answers
Unit 6 Teaching notes \qquad

Unit 7- multiplication and division - scaling

Unit 7 Introduction

Unit 7 Questions

Unit 7 Answers
Unit 7 Teaching notes

Unit 8- fractions and decimal places

Unit 8 Introduction

Unit 8 Questions

\qquad
Unit 8 Answers \qquad
Unit 8 Teaching notes \qquad

Unit 9- fractions equivalence - fractions, decimals and percentages

Unit 9 Introduction
Unit 9 Questions
Unit 9 Answers
Unit 9 Teaching notes

Introduction

U Ω

This pack features nine units covering the problem-solving aspects of Year 5 Maths. Each unit includes comprehensive activities, differentiated to three levels, based on the number problem-solving objectives in the Year 5 Maths curriculum. Includes example sections for whole class scaffolded work, investigations, word problems, teaching notes and step-by-step answers.
Within each unit there are three levels of exercises, A, B, C, which follow support, core and extension according to the following:

Set A is for the support [S] group

Set B is for the core [C] group
Set C is for the extension [E] group

The questions in the example sections use the bracketed symbots, $[\mathrm{S}],[\mathrm{C}]$ and $[\mathrm{E}]$, to indicate the level of the work.

We hope you enjoy using this pack. If you have any questions, please get in touch: email support@teachitprimary.co.uk or call us on 01225 788851. Alternatively, you might like to give some feedback for other Teachit Primary members - you can do this by adding a comment on the Y5 Problem solving - number page on Teachit Primary (please log in to access this)

Unit 3 -

Addition and subtraction problems

ㄴ. In this unit, you will:

- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

The following phrases will be useful to know.

Addition (+)	Subtraction (-)
'find the total...'	'find the difference between'
'find the sum of...'	'... decreased by...'
'...is increased by...'	'subtract from...'
'How many altogether?'	'How much more/ less?'
'plus or added to'	'minus or dropped by'

Example:

1. Fill in the gaps: [S]
a. $9+\square=30$
c. $350+\square=1000$
e. $-25=37$
b. $51+\square=100$
d. $60-\square=13$
f. $\square-1650=2000$

The digits in the 2 -digit number 23 add up to give $5(2+3=5)$.
How many other numbers have digits that add up to 5? They must not have any zeros. [S]
\square
3. Use any whole numbers as many times as you like to make each line of the rectangle add up to 10. [C]

4. Kerry had a pack of 15 cards numbered from 1 to 15 . She arranged the cards into 5 unequal piles where each pile added to the same total. What was the total and how could this be done? [E]

Unit 3 - Set A

5. Fill in the gaps:
g. $7+\square=20$
i. $650+\square=1000$
k. $\square-24=36$
6. The digits in the 2-digit number 24 add up to give $6(2+4=6)$.

How many other numbers have digits that add up to 6? They must not have any zeros.

7. There are exactly 3 ways to add 4 odd numbers to get 10 .

For example: $1+3+5+1=10$.
Find the other two ways.

8. Place each of the numbers $\mathbf{1}$ to $\mathbf{7}$ in the circles below so that each line adds up to the same total.

$$
\square \Gamma \square \square \square
$$

9. Kathy had a pack of 9 cards numbered from 1 to 9 . She arranged the cards into 5 unequal piles where each pile added to the same total.

What was the total and how could this be done?

10. a. Place each of the numbers 1 to 5 in the V shape so that the two arms of the V have the same total.
b. How many different ways can you find of doing it?

11. Place each of the numbers $\mathbf{1}$ to $\mathbf{8}$ in the boxes below so that each row adds up to a total equal to 12.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12. Numbers can be known as palindromes. For example 77, 242, 12,321, all read the same forwards as they do backwards.
a. Ring the numbers that are palindromic:
27
72
181
405
505
148,841
b. Write down some 4-digit and 5-digit palindromic numbers.

c. Now try the following:

- Write down any number that is more than one digit. (e.g. 38)
- Write down the number reversed beneath the first number. (83)
- Add the two numbers together. $(38+83=121)$
- And 121 is indeed a palindrome.
- For some numbers you may need to repeat the process until you reach a palindrome.

Using the same steps:
i. Try this with the number 27.
ii.

Next try the number 49. Continue to repeat the steps from 2-4 if needed until you reach a palindrome.
iii. Every time you go through steps $1-4$ we call it a stage.

Now try some other 2-digit numbers to find which one takes the most number of stages to get to a palindrome. (27 took 1 stage, 49 took 2 stages)

Unit 3 - Answers: Addition and Subtraction problems

Unit 3 - Answers: Addition and Subtraction problems

For progression, the questions more or less follow alphabetically eg: A-Q1 \rightarrow B-Q1 The following hints or tips can be given to help give the pupils a start. Pupils enjoy and learn quite quickly from each other if templates are made and numbers cut out so that they can easily move them around.

- Set A Q5 - ask pupils to add the numbers up ... divided by 5 to get each pile total
- Set A Q7 - give pupils the position of ' 1 ' and ' 8 '.
- Set B Q2 - encourage looking for different combinations of the same digits (1123, 1213, ... etc).
- Set B Q5 - let pupils know that the corners are added twice and once a line-total is achieved, we can swap the centre numbers for one of the corner ones.
- Set B Q6 - get the highest (' 14 ') total first.
- Set B Q7 - give pupils the position of '1' and '12'.
- Set C Q2 - establish that each pile adds up to ... $210 \div 5=35$.
- Set C Q4 - ask the pupils what the M must stand for (encourage 'carry-overs').
- Set C Q5 - give pupils the position of ' 1 ' and ' 12 '.
- Set C Q7 - give pupils the position of ' 1 ' and ' 12 '.

Example:

1. Fill in the gaps: [S]
a. $9+21=30$
b. $51+49=100$
c. $350+650=1000$
d. $60-47=13$
e. $62-25=37$
f. $3650-1650=2000$
2. The digits in the 2 -digit number 23 add up to give $5(2+3=5)$.

How many other numbers have digits that add up to 5 ? They must not have any zeros. [S]

2-digit	14 and $41 ; 23$ and 32
3-digit	$122,212,221,113,131,311$
4-digit	$1112,1121,1211,2111$
5-digit	11111

3. Use any whole numbers as many times as you like to make each line of the rectangle add up to 10. [C]

Kerry had a pack of 15 cards numbered from 1 to 15 . She arranged the cards into 5 unequal piles where each pile added to the same total. What was the total and how could this be done? [E]

$1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120$
$120 \div 5=24 \ldots$ so each pile adds up to 24
Here is one way:
$15+9$ $14+10 \square 13+11$

Unit 3 - Set A

1.

a. $7+13=20$
b. $31+69=100$
c. $650+350=1000$
d. 30 - $13=17$
e. $60-24=36$
f. $550-1450=2000$
2.

2-digit	15 and 51; 24 and 42; 33
3-digit	$123,132,213,231,321$ and $312 ; 114,141$ and 411.
4-digit	$1113,1131,1311$ and $3111 ; 1122,1212,1221,2211,2112$ and 2121.
5-digit	$11112,11121,11211,12111$ and 21111.
6-digit	111111.

3.

$$
(1+3+5+1=10)
$$

$$
1+3+3+3=10
$$

$$
1+1+1+7=10
$$

4.

5.
$1+2+3+4+5+6+7+8+9=45 \ldots$.
$45 \div 5=9 \ldots$ so each pile adds up to 9 .

6. a.

1
2
1
2
(3)

2
4
3
5
5 4

4 5
b.

8.
a. 27

72
181
405
505
148,841
b. just a few ...

1441499420025775 32,123 14,741 20,402 45,654 94,349 ...
c. i. step 1
step 2
step 3
step 4

27
72
$99(27+72)$
99 is a palindrome (1 stage)

Unit 3: Addition and Subtraction problems

ii. step 1	49
step 2	94
step 3	$143(49+94)$
step 4	143 is not a palindrome (1 stage)
step 2	341
step 3	$484(143+341)$
step 4	484 is a palindrome (2 stages)

iii.

Stage 1 Stage 2 Stage 3 Stage $4 \quad$ Stage 5 Stage 6

63	63	36	99										
67	67	76	143	341	484								
68	68	86	154	451	605	506	1111						
78	78	87	165	561	726	627	1353	3531	4884				
79	79	97	176	671	847	748	1595	5951	7546	6457	14,003	30,041	440,044

