

Contents

Introduction	001
Unit 1- place value number problems	
·	
Unit 1 Introduction	
Unit 1 Answers	
Unit 1 Teaching notes	
Unit 2- place value practical problems	*
Unit 2 Introduction	
Unit 2 Introduction Unit 2 Questions	
Unit 2 Answers	
Unit 2 Teaching notes	
Unit 3- addition and subtraction problems	
Unit 3 Introduction	
Unit 3 Questions	
Unit 3 Answers	
Unit 3 Teaching notes	
Unit 4- length, perimeter and area	
Unit 4 Introduction	
Unit 4 Questions	
Unit 4 Answers	
Unit 4 Teaching notes	
Unit 5- multiplication and division, factors and squares	
Unit 5 Introduction	
Unit 5 Questions	• • • • • • • • • • • • • • • • • • • •
Unit 5 Answers	
Unit 1 Teaching notes	

Jnit 6- multiplication and division operations
Unit 6 Introduction
Unit 6 Questions
Unit 6 Answers
Unit 6 Teaching notes
Jnit 7- multiplication and division - scaling
Unit 7 Introduction
Unit 7 Questions
Unit 7 Answers
Unit 7 Teaching notes
Unit 8 Introduction Unit 8 Questions
Unit 8 Questions
Unit 8 Answers
Unit 8 Teaching notes
office of reaching floces
Jnit 9- fractions equivalence - fractions, decimals and percentages
Unit 9 Introduction
Unit 9 Questions
Unit 9 Answers
Unit 9 Teaching notes

Introduction

This pack features nine units covering the problem-solving aspects of Year 5 Maths. Each unit includes comprehensive activities, differentiated to three levels, based on the number problem-solving objectives in the Year 5 Maths curriculum. Includes example sections for whole class scaffolded work, investigations, word problems, teaching notes and step-by-step answers.

Within each unit there are three levels of exercises, A, B, C, which follow support, core and extension according to the following:

Set A is for the support [S] group Set B is for the core [C] group Set C is for the extension [E] group

The questions in the example sections use the bracketed symbols, [S], [C] and [E], to indicate the level of the work.

We hope you enjoy using this pack. If you have any questions, please get in touch: email support@teachitprimary.co.uk or call us on 01225 788851. Alternatively, you might like to give some feedback for other Teachit Primary members - you can do this by adding a comment on the Y5 Problem solving - number page on Teachit Primary (please log in to access this)

Unit 3 -Addition and subtraction problems

n this unit, you will:

- · add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

The following phrases will be useful to know.

Addition (+)	Subtraction (-)
'find the total '	'find the difference between'
'find the sum of'	' decreased by'
'is increased by'	'subtract from'
'How many altogether?'	'How much more/ less?'
'plus or added to'	'minus or dropped by'

Example:

1. Fill in the gaps: [S]

The digits in the 2-digit number 23 add up to give 5(2 + 3 = 5). How many other numbers have digits that add up to 5? They must not have any zeros. [S]

*					

3. Use any whole numbers as many times as you like to make each line of the rectangle add up to 10. [C]

4. Kerry had a pack of 15 cards numbered from 1 to 15. She arranged the cards into 5 unequal piles where each pile added to the same total. What was the total and how could this be done? [E]

Unit 3 - Set A

5. Fill in the gaps:

6. The digits in the 2-digit number 24 add up to give 6 (2 + 4 = 6).

How many other numbers have digits that add up to 6? They must not have any zeros.

7. There are exactly 3 ways to add 4 odd numbers to get 10.

For example: 1 + 3 + 5 + 1 = 10.

Find the other two ways.

8. Place each of the numbers 1 to 7 in the circles below so that each line adds up to the same total.

9. Kathy had a pack of 9 cards numbered from 1 to 9. She arranged the cards into 5 unequal piles where each pile added to the **same total**.

What was the total and how could this be done?

1	2	
	\Box	

10. a. Place each of the numbers 1 to 5 in the V shape so that the two arms of the V have the same total.

b. How many different ways can you find of doing it?

11. Place each of the numbers 1 to 8 in the boxes below so that each row adds up to a total equal to 12.

12. Numbers can be known as palindromes.	For example 77, 242,	, 12,321, all <i>read th</i>	ıe
same forwards as they do backwards.			

27

72

181

405

505

148,841

b. Write down some 4-digit and 5-digit palindromic numbers.

c. Now try the following:

- Write down any number that is more than one digit. (e.g. 38)
- Write down the number reversed beneath the first number. (83)
- Add the two numbers together. (38 + 83 = 121)
- And 121 is indeed a palindrome.
- For some numbers you may need to repeat the process until you reach a palindrome.

Using the same steps:

- i. Try this with the number 27.
- ii. Next try the number **49**. Continue to repeat the steps from 2-4 if needed until you reach a palindrome.
- iii. Every time you go through steps 1 4 we call it a stage.

Now try some other 2-digit numbers to find which one takes the most number of **stages** to get to a palindrome. (**27** took 1 stage, **49** took 2 stages)

Unit 3 - Answers: Addition and Subtraction problems

For progression, the questions more or less follow alphabetically eg: A-Q1 \rightarrow B-Q1

The following hints or tips can be given to help give the pupils a start. Pupils enjoy and learn quite quickly from each other if templates are made and numbers cut out so that they can easily move them around.

- Set A Q5 ask pupils to add the numbers up ... divided by 5 to get each pile total
- Set A Q7 give pupils the position of '1' and '8'.
- Set B Q2 encourage looking for different combinations of the same digits (1123, 1213, ... etc).
- Set B Q5 let pupils know that the corners are added twice and once a line-total is achieved, we can swap the centre numbers for one of the corner ones.
- Set B Q6 get the highest ('14') total first.
- Set B Q7 give pupils the position of '1' and '12'.
- Set C Q2 establish that each pile adds up to ... $210 \div 5 = 35$.
- Set C Q4 ask the pupils what the M must stand for (encourage 'carry-overs').
- Set C Q5 give pupils the position of '1' and '12'.
- Set C Q7 give pupils the position of '1' and '12'.

Example:

[S]

1. Fill in the gaps: [S]

2-digit	14 and 41; 23 and 32	
3-digit	122, 212, 221, 113, 131, 311	
4-digit	1112, 1121, 1211, 2111	
5-digit	11111	

3. Use any whole numbers as many times as you like to make each line of the rectangle add up to 10. [C]

4 Kerry had a pack of 15 cards numbered from 1 to 15. She arranged the cards into 5 unequal piles where each pile added to the same total. What was the total and how could this be done? [E]

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120$$

 $120 \div 5 = 24 \dots$ so each pile adds up to 24

Here is one way:

15 + 9 | 14

14 + 10 | 13 + 11

12 + 8 + 4

7 + 6 + 5 + 3 + 2+ 1

Unit 3 - Set A

1.

2.

2-digit	15 and 51; 24 and 42; 33
3-digit	123, 132, 213, 231, 321 and 312; 114, 141 and 411.
4-digit	1113, 1131, 1311 and 3111; 1122, 1212, 1221, 2211, 2112 and 2121.
5-digit	11112, 11121, 11211, 12111 and 21111.
6-digit	111111.

3.

$$(1 + 3 + 5 + 1 = 10)$$

 $1 + 3 + 3 + 3 = 10$
 $1 + 1 + 1 + 7 = 10$

4.

5.

 $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 \dots$ $45 \div 5 = 9 \dots$ so each pile adds up to 9.

6. a.

b.

8.

- b. just a few ... 1441 4994 2002 5775 32,123 14,741 20,402 45,654 94,349 ...
- c. i. step 1
 27

 step 2
 72

 step 3
 99 (27 + 72)

 step 4
 99 is a palindrome (1 stage)

ii. step 1	49
step 2	94
step 3	143 (49 + 94)
step 4	143 is not a palindrome (1 stage)
step 2	341
step 3	484 (143 + 341)
step 4	484 is a palindrome (2 stages)

iii.

	Stage 1		Stage 1 Stage 2		Stage 2 Stage 3		Stage 4 Sta		Sta	ge 5	Sta	ge 6	
63	63	36	99										
67	67	76	143	341	484								
68	68	86	154	451	605	506	1111						
78	78	87	165	561	726	627	1353	3531	4884				
79	79	97	176	671	847	748	1595	5951	7546	6457	14,003	30,041	440,044